A Comparison of Normal Approximation Rules for Attribute Control Charts
نویسندگان
چکیده
Control charts, known for more than 80 years, have been important tools for business and industrial manufactures. Among many different types of control charts, the attribute control chart (np-chart or p-chart) is one of the most popular methods to monitor the number of observed defects in products, such as semiconductor chips, automobile engines, and loan applications. The attribute control chart requires that the sample size n is sufficiently large and the defect rate p is not too small so that the normal approximation to the binomial works well. Some rules for the required values for n and p are available in the textbooks of quality control and mathematical statistics. However, these rules are considerably different and hence it is less clear which rule is most appropriate in practical applications. In this paper, we perform a comparison of five frequently used rules for n and p required for the normal approximation to the binomial. Based on this result, we also refine the existing rules to develop a new rule that has a reliable performance. Datasets are analyzed for illustration.
منابع مشابه
FUZZY CONTROL CHARTS FOR VARIABLE AND ATTRIBUTE QUALITY CHARACTERISTICS
This paper addresses the design of control charts for both variable ( x chart) andattribute (u and c charts) quality characteristics, when there is uncertainty about the processparameters or sample data. Derived control charts are more flexible than the strict crisp case, dueto the ability of encompassing the effects of vagueness in form of the degree of expert’spresumption. We extend the use o...
متن کاملFuzzy rules for fuzzy $overline{X}$ and $R$ control charts
Statistical process control ($SPC$), an internationally recognized technique for improving product quality and productivity, has been widely employed in various industries. $SPC$ relies on the use of control charts to monitor a manufacturing process for identifying causes of process variation and signaling the necessity of corrective action for the process. Fuzzy data exist ubiquitously in the ...
متن کاملUsing Regression based Control Limits and Probability Mixture Models for Monitoring Customer Behavior
In order to achieve the maximum flexibility in adaptation to ever changing customer’s expectations in customer relationship management, appropriate measures of customer behavior should be continually monitored. To this end, control charts adjusted for buyer’s/visitor’s prior intention to repurchase or visit again are suitable means taking into account the heterogeneity across customers. In the ...
متن کاملA New Uni-attribute Control Chart to Monitor the Number of Nonconformities
The most well-known uni-arribute control chart used to monitor the number of nonconformities per unit is the Shewhart type C-chart. In this paper, a new method is proposed in an attempt to reduce the false alarm rate in the C-chart. To do this, the decision on beliefs (DOB) concept is first uti [1] Corresponding author e-mail: [email protected] lized to design an iterative method, where...
متن کاملSimultaneous Monitoring of Multivariate-Attribute Process Mean and Variability Using Artificial Neural Networks
In some statistical process control applications, the quality of the product is characterized by thecombination of both correlated variable and attributes quality characteristics. In this paper, we propose anovel control scheme based on the combination of two multi-layer perceptron neural networks forsimultaneous monitoring of mean vector as well as the covariance matrix in multivariate-attribu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Quality and Reliability Eng. Int.
دوره 31 شماره
صفحات -
تاریخ انتشار 2015